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Contributed Paper 
Neural Network Simulation of an Automotive Shock Absorber 

J O S E P H  G I A C O M I N  
Centro Ricerche Fiat 

This paper discusses the use of  a back-propagation neural network for the purpose of  modeling an 
automotive shock absorber. A brief description of  the method is presented, as well as the structure of  
the network developed. The absorber model has been implemented in a numerical suspension 
simulation and comparisons are made between the simulation outputs and experimental test results. 
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LIST OF SYMBOLS 

err error output 
f(t) reaction force 
x(t) displacement 
2(0 velocity 
x,(t) normalized displacement 
2,( 0 normalized velocity 
I input to a processing unit 
W weight value 
X output from a processing unit 

INTRODUCTION 

In the automotive industry much use is made of 
dynamic vehicle simulations. One typical simulation of 
interest is that of the behavior of a suspension system 
when passing over an obstacle (Fig. 1). A suspension 
design can be studied and optimized for ride comfort by 
numerical testing with a simulation code and standar- 
dized obstacles. 

One of the most difficult suspension elements to 
model acceptably for simulation purposes is the shock 
absorber. The reaction force generated by the absorber 
is a function of several variables, among which are its 
displacement, velocity and frequency of oscillation. 1 
The behavior of the shock absorber has traditionally 
been specified by force-velocity curves which are pro- 
duced by plotting the maximum force vs the maximum 
velocity measured during a test cycle on a stand which 
imparts a known motion (sine wave, triangular wave, 
etc.) to the absorber. This specification accurately 
describes the peak values attained but lacks infor- 
mation about the behavior at all other points of the 
cycle. When inserting this characteristic curve into a 
suspension simulation model large errors can be pro- 
duced in the calculated output. 

The necessity of improving the quality of suspension 
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simulations requires that procedures be found to model 
the absorber accurately. The study presented here 
involves a neural network modeling of a typical pas- 
senger car shock absorber. 

BACK-PROPAGATION NETWORKS 

Back-propagation networks are well-suited to many 
engineering applications. 2-4 These networks have the 
general structure shown in Fig. 2. As can be seen, the 
basic building blocks of this neural network are ele- 
ments (activation functions) and connections (weights). 

Elements 

Elements serve the purpose of collecting and modify- 
ing data inputs. Each element can be thought of as 
processing a small piece of the overall information 
content. The strength of neural network techniques lies 
in the use in parallel of many elements to simulate a 
system. 

Each element sums the input from the preceding 
elements to which it is connected and transforms it in 
some fixed way (the activation function) to form its 
output. A typical processing element is shown in Fig. 3. 
The input to this element is the sum of the activations 
of the preceding elements to which is it connected, 
multiplied by the weight value of each connection. This 
can be written as 

It= ~ WoXs (1) 
i=l 

where: I t=the input to element j. Wit=the strength 
value of the connection from element i to element j. 
Xi--the output from element i (in a previous layer). 

The output of element j is given by transforming the 
input lj by an activation function. Any activation func- 
tion can be used with the back-propagation algorithm, 
subject to the restriction that there exists the first 
derivative. A typical activation function is simply the 
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Fig. 1. McPherson front suspension model. 

O U T P U T  

OUTPUT ~YER ~(~[ 

HIDDEN LAYER 11 -//~.~/ (~ ~ ~ ~3 

HIDDEN LAYER I io 

1,PUT LAYER D< ( y  ) '"0 

I N P U T  

= Element (octwotJon function} 

= Conection (weight) 

Fig. 2. Neural network. 

linear transfer function which passes the input value 
straight through without modification to output. This 
can be written as: 

Xj=Ij (2) 

In practice a network composed of only linear activa- 
tion functions is limited as to the systems it can satisfac- 
torily model. Among the various activation functions 
used to model highly nonlinear systems is the hyperbo- 
lic tangent function: 

eh - e-6 
Xj eli+e_ 6. (3) 

This activation function is of interest because it exhibits 
a saturation behavior at both extremes which is typical 
of many biological mechanisms, 5 and is useful for our 
application because it introduces a strong nonlinearity. 

Elements (activation functions) are static properties 
of the network, they are part of the basic structure. 
Once the elements of the network are all assigned an 
activation function, these functions remain in place 
throughout the various phases of use of the network. 
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Fig. 3. Individual processing element. 

Weights 
Weights are the dynamic structure of a neural 

network that adjust to perform a required task. Each 
weight regulates the strength of the connection 
between two elements. Each element in the network 
receives as its input the output of the previous element 
to which it is attached, multiplied by the weight value 
on the connection between the two elements. 

Organization 
The elements and connections which form a back- 

propagation neural network are usually organized into 
layers. Figure 2 shows a network formed of an input 
layer, an output layer and several intermediate layers. 
The input layer has one element for each element of the 
input data pattern, while the output layer has one 
element for each of the desired outputs. 

Functioning 
In our study there are two distinct phases in the use 

of the back-propagation network: training and appli- 
cation. In the first phase the network is shown input/ 
output pairs from the patterns or signals which the user 
wishes to simulate. A process involving a learning 
algorithm takes place, in which the connection weights 
of the network are adjusted with each set of input/ 
output data so as to better reproduce the desired 
behavior. In the second phase the defined (trained) 
network is implemented through software to perform 
the desired task. In this phase the user can do away 
with the overhead involved in the training algorithm 
and keep only the simple weight and connection data. 

The real conceptual and programming effort lies in 
the training of the network by the learning algorithm. 
What follows is a simplified description of the back- 
propagation learning algorithm. 

The network initially begins with weight values con- 
necting the various elements which are small (close to 
zero) random values. This is done because the learning 
algorithm would not be able to move if the start weight 
values were zero [see equations (1), (2) and (3)]. A set 
of values from the input data file is assigned to the input 
units. These values are propagated forward through the 
network by summing element inputs and calculating 
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Fig. 4. Test setup. 

element outputs from the first layer to the last. At the 
output layer the calculated values are compared to the 
desired values. The difference is then propagated back 
toward the input units as an error signal. As this signal 
reaches each individual connection in the network the 
weight is modified so as to reduce the overall modeling 
error. The learning rule is a gradient descent algorithm 
which minimizes the overall system error. In its sim- 
plest form the function to perform this task can be 
written as:* 

A Wij = C er% X~. (4) 

where: AWij is the change to be made to the weight 
from element i to element j. C is a learning coefficient 
chosen according to the application (typically in the 
range 0.1-0.8). errj is the error output from the element 
j. Xi is the activation value of element i. 

The process of fixing input/output values and chang- 
ing weights is repeated for a number of data sets. With 
each iteration the weights are modified such that the 
network more closely produces the correct output from 
the given input. The learning process is continued until 
the network converges to an optimal solution. 

TRAINING DATA 

The data used for training the neural network in this 
study was produced by testing a shock absorber in a test 
rig as shown in Fig. 4. In the test setup a known motion 
is imparted to the absorber by a hydraulic actuator and 
a PID control system. 

For this study the shock absorber was considered to 
be a one degree of freedom oscillator with nonlinear 

* For a complete derivation of this result see Ref. 6. 
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stiffness and damping terms. The quantities of interest 
were therefore the absorber  displacement,  velocity and 
reaction force. The quantities physically measured 
during the bench tests were the absorber displacement, 
acceleration and reaction force. 

To generate a model suitable for obstacle studies it 
was decided to test the absorber  with a series of 
sinusoids of frequencies from 1 to 30 Hz and amplitudes 
from 5 to 50 mm. Table 1 lists the various tests per- 
formed.  The choice of tests was such as to cover a 
significant portion of the absorber 's  operating range. 
The tests were performed in few cycles (typically 6-8)  
in order  to limit the heating of the absorber,  and thus 
reduce the effects of temperature .  The data selected for 
this study involved only the steady state portion of the 
test data, the transient having always died out in less 
than one test cycle. 

Several operat ions were per formed on the test data 
in order  to prepare  it for use as training data. The first 
operat ion involved a numerical integration and trend 
removal of the acceleration signal to produce a velocity 
signal. With this the state variables (x, k) were defined 
for use as model inputs. 

The second operat ion performed was a normaliza- 
tion of the three data vectors (displacement, velocity 
and reaction force) in order to be in the range from - 1  
to +1. Normalization of the input/output  data was 
per formed to improve the accuracy of computat ion.  

The last operat ion involved the order of presentation 
of the training data. The input/output  data groups 
composed of the terms xn(t-1),  kn(t-1),  x,(t), k~(t) 
and f(t) were rearranged in random order in the input 
data file. This was done to reduce the effects of  un- 
measured parameters  and noise which vary somewhat  
between the different test cycles performed.  The ran- 
domization of the presentation order made it harder for 
the network to overtrain 7 to any one test cycle and thus 
also to its noise. This permit ted greater  flexibility in the 
choice of  training parameters .  

SHOCK ABSORBER MODEL 

It was decided that the neural model would take the 
form of an input layer for distributing the data and a 
series of nonlinear intermediate layers for performing 
the modeling. Several different back-propagation 

networks were tried empirically in order to optimize 
the size of the resulting network with respect to the 
accuracy of the produced output. 

The final network decided upon is shown in Fig. 2. 
This network has four normalized inputs which are the 
displacement and velocity at times t and t - l .  Initial 
tests showed that the network needed a velocity lag 
term k ( t -  1) as well as k(t) to perform adequately. In 
this way the network had information on the slope of 
the velocity curve, hence the acceleration. These initial 
at tempts also showed that the modeling accuracy was 
insensitive to additional lag terms. The signal output 
from the network is the normalised force generated at 
time t. 

The activation functions decided upon were linear 
for the input and the output elements and hyperbolic 
tangent for the elements of the two intermediate layers. 
The choice of linear functions for the input layer was 
arbitrary. For the nonlinear layers both the sigmoid and 
hyperbolic tangent function were initially tried, and 
testing showed that both functions produced equally 
accurate results. The hyperbolic tangent function was 
eventually preferred because it changes sign (range - 1  
to 1) as in the test data (which was useful for debug- 
ging). The output activation function was chosen linear 
because initial tests showed convergence problems 
when the activation function of the output e lement  was 
nonlinear. 

There  is an additional input element which is the bias 
term of constant value 1. This term creates an offset 
value to the inputs of the various elements of the 
network. 

During training the network reached near-opt imum 
performance after a few hundred cycles. With the 
weight data defined, the operation of this network can 
be summarized by the following steps: 

(1) Normalize input data: 

xn(t - 1) = x ( t -  1)/0.05 

~cn(t- 1 ) = k ( t -  1)/3.0 

xn(t) = x(t)/O.05 

kn(t) =k(t)/3.0 

where x ( t -  1), k ( t -  1), x(t) and k(t) are to be in meters  

Table 1. Shock absorber tests performed 

A(mm) 
F(Hz) 5 8 Ill 13 15 18 20 25 30 40 50 

30 942.4 1507.9 1884.9 2450.3 2827.3 
25 785.4 1256.6 1570.8 2042.0 2356.2 2827.4 3141.6 
20 628.3 1005.3 1256.6 1633.6 t884.9 2261.9 2513.2 3141.6 
15 471.2 753.9 942.4 1225.2 1413.7 1696.4 1884.9 2356.1 
10 314.6 502.6 628.3 816.8 942 .2  1130.9 1256.6 1570.9 
7 219.9 351.8 439.8 571.7 659.7 791.6 879 .6  1099.5 
5 157.0 251.3 314.1 408.4 471.2 565.4 628 .3  785.4 
3 94.2 150.8 188.4 2 4 5 . 0  282 .7  3 3 9 . 9  376 .9  471.2 
1 31.4 50.2 62.8 81.8 94.2 113.0 125.6 157.0 

2827.4 
1884.9 2513.3 3141.6 
1319.5 1759.3 2199.1 
942.4 1256.6 1570.8 
565.5 7 5 3 . 9  942.4 
188.4 251.3 314.1 

The values given in the table indicate the maximum theoretical velocity attainable with that particular combination of 
frequency and amplitude. 
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and m/s respectively. The normalization values of 
3.0 m/s and 0.05 m are the maximum values in the 
training data used. 

(2) Calculate the inputs to the elements in the first 
hidden layer: 

16 = - 1.4077 - 1.6966x,(t- 1) + 1.6029k,( t -  1) 

+ 2.0009x.(t) + O. 18342.(0 
/7 = -0 .8718 + 0 .6467x. ( t -  1) - 2 .0996k.( t -  1) 

- 1.1381x.(t) + 0.5000k.(t) 

I8 = -0 .7522 - 3 .3363x. ( t -  1) + 2 .5674k.( t -  1) 

+ 1.0525x.(t) - 1.15932.(0 

19 = 0.2825 + 1 .8938x.( t -  1) - 2 .4293k. ( t -  1) 

- 2.6375x.(t) - 1.21235c.(t) 

11o = -1 .2699 + O.1900x.(t-  1) - 1 .3099k.( t -  1) 

- 3.3064x.(t) + 3.44662.(0. 

(3) Calculate the inputs to the elements in the second 
hidden layer: 

(a) 

FORCE 

1 

_ .5 ~ " -  5 b " ~ " " ~ 6 0  ~ 2dO TiME 

-1 T [ 

(b) 
FORCE 

T,ME 

Fig. 5. Two examples of actual force and force calculated from the 
neural network. 

rubber elements in the suspension bushings. In Figs 
6(a) and 7(a) the shock absorber model is the tradi- 
tional force-velocity specification, in Figs 6(b) and 7(b) 
the model is the neural network. The force given in the 
figures is measured at a suspension attachment point. 
The neural model was found to significantly improve 

1]1 = -0 .0438 + 0.5584 Tanh(I6) - 0.1036 Tanh(/7) 

+ 1.5582 Tanh(18) -  1.6051 Tanh(19) 

- 2.0515 Tanh(ll0) 

112 = -0 .5539 - 1.3102 Tanh(16) + 1.0968 Tanh(/7) 

-0 .6469  Tanh(18) - 1.3891 Tanh(19) 

+ 0.0067 Tanh (ll0) 

113 ----- 0.2545 + 1.1748 Tanh(16) - 1.1324 Tanh(/7) 

+ 0.4965 Tanh(Is) + 0.7793 Tanh(19) 

- 0.2556 Tanh(h0) 

(4) Calculate the resultant output force: 

f(t) = [0.0224 + 0.4646 T a n h ( l .  ) - 0.1943 Tanh(/12) 

+ 0.2004 Tanh(113)] 2038 

where f(t) is given in Newtons and the normalization 
value of 2038 is the maximum found in the reaction 
force data. 

Figures 5(a) and (b) present two examples of the 
actual training force and the force calculated by the 
network given above. There  is good agreement 
between the neural model and the actual absorber. 

SIMULATION RESULTS 

Figures 6 and 7 present results obtained from simula- 
tions performed with the ADAMS 8 code and experi- 
mental tests in which a McPherson front-suspension 
model is run over a rectangular obstacle of width 
100 mm and height 25 mm. The model includes the 
principal structural elements as well as several of the 
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Fig. 6. Experimental  and calculated forces at a suspension attach- 
ment  point for passage over an obstacle of  100 by 25 m m  at 40 km/h.  

(a) Force-veloci ty specification. (b) Neural network model. 
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Fig. 7. Experimental and calculated forces at a suspension attach- 
ment point for passage over an obstacle of 100 by 25 mm at 80 km/h. 

(a) Force-velocity specification. (b) Neural network model. 

the simulation results. The  improvemen t  was most  
evident  for si tuations in which the shock absorber  
works near  its opera t ing  limits. 

CONCLUSIONS AND RECOMMENDATIONS 

A back-propaga t ion  neural ne twork  was defined 
which effectively learned the behavior  of  an automot ive  
shock absorber .  In the simulations pe r fo rmed  to date 
with the neural model  there has been a substantial 
improvement  in the results with respect  to the traditio- 
nal f o r ce - -ve loc i t y  specification. 

The differences be tween the calculated and experi- 
mental  results are to be at t r ibuted in part  to the A d a m s  
suspension model  and in part  to the neural shock 
absorber  model .  The  A d a m s  model ing can best be 
improved by utilizing more-accura te  shape and mat- 

erial proper ty  data for the various e lements  which 
compose  the suspension. 

The neural shock absorber  model  can also be 
improved  in several ways. First, a more  exhaustive set 
of  training data  (other  vibratory waveforms)  can be 
a t tempted.  This may permit  the neural ne twork to see 
behavior  which might not have been produced  by the 
present  training set (the absorber  is nonlinear) .  A 
second improvement  could be the utilization of  more  
input parameters .  For  example,  the reaction force has 
been shown to depend  on the shock absorber  oil 
t empera tu re . '  The  fact that  this parameter  is not  util- 
ized here as an input to the model  plays some part  in 
the discrepancies of  Figs 6 and 7. 

A n y  steps towards  determining improvements  to the 
neural model  must  necessarily pass through verifica- 
tions of  the present  model ' s  behavior  when subjected to 
o ther  vibratory waveforms such as r andom vibration.  
The network in the current  simulations has pe r fo rmed  
adequate ly  when exposed to a mot ion  significantly 
different f rom the test data  set. Utilizing the model  
with waveforms which are greatly different in nature 
will bring to light any eventual  deficiencies. 

It is the object  of  current  research to cont inue  
improving the neural model  and to determine if this 
model  or  some derivative can per form adequate ly  for 
all given input motions.  
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