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Abstract 

This paper describes the Mildly Nonstationary Mission Synthesis (MNMS) algorithm which has recently been 
developed for the purpose of producing short vibration mission signals which are representative of 
experimentally measured road data. The MNMS method makes use of the Discrete Fourier Transform (DFT), 
the Orthogonal Wavelet Transform (OWT) and bump (shock) selection and reinsertion techniques. By 
performing a wavelet grouping procedure, and by setting trigger levels, the user can produce signals which are 
shortened by up to a factor of 10 compared to the original road data. The resulting missions are representative 
of the original data in terms of Power Spectral Density (PSD), Probability Density Function (PDF), RMS value, 
Crest Factor and Kurtosis value. Mission synthesis results vary depending on the level of nonstationarity 
present in the original data, but obtained mission signal PSD, RMS, and Kurtosis values are typically within +/-
10% of the road data targets. The MNMS algorithm has been implemented as a Fortran program for DOS-
compatible personal computers 

1. Introduction 

In automotive engineering, vibration mission signals are important because many components are nonlinear, 
providing different vibratory behaviour depending on the nature of the input excitation used. A common 
example of this is the person/seat system, whose transmissibility function shows a softening system 
behaviour, with the principal resonance shifting to lower frequencies as the excitation amplitude at the base of 
the seat rises [3,4]. Vibration mission signals which summarise in a short test sequence the behaviour actually 
encountered in the vehicle during driving are commonly used for both laboratory testing and numerical 
simulation. Unfortunately, it is still common practice to use vibration inputs which are simple recordings made 
at the seat guide of a reference vehicle when driving over standard test tracks, each track being selected 
because it was found through experience to excite important vehicle and subsystem resonances. Determining 
these mission signals has often been a matter of trial and error. 

This paper describes the Mildly Nonstationary Mission Synthesis (MNMS) algorithm [5,6] developed during the 
course of Brite-Euram Project 4186 SCOOP [1] for the purpose of assisting engineers to define vibration 
mission signals for vehicle components such as seats. MNMS is a compression tool which shortens road or 
test track signals while maintaining unaltered the fundamental vibrational nature of the data. The algorithm 
uses the Discrete Fourier Transform (DFT), the Orthogonal Wavelet Transform (OWT) and bump (shock) 
selection and reinsertion techniques. The algorithm provides short data sets which reproduce the original road 
data record in several statistical metrics including: Power Spectral Density (PSD), Probability Density Function 
(PDF), RMS value, Crest Factor and Kurtosis. For the purpose of seat vibrational testing, an accurate 
reproduction of the original road data in terms of Kurtosis is fundamental due to the close correspondence 
between this metric and the 4th power methods such as the Vibration Dose Value (VDV) [7] commonly used for 
evaluating comfort. 



2. Classification of Road Data 

Classical methods of vibration mission synthesis assume that the measured data is both stationary and 
Gaussian. By stationary, it is meant that the statistical measures of the data do not change within the system 
response times, and within the time necessary for a good statistical sample. By Gaussian, it is meant that the 
data can be accurately modelled using a Gaussian probability distribution function. Stationary Gaussian 
processes are completely described by their Power Spectral Density, which characterises the distribution of 
vibrational energy in the frequency domain. Classical mission synthesis methods first calculate an average 
PSD function to the represent the complete road data set, then perform an inverse Fourier transform using the 
modulus values of the average PSD and random phase angles to produce short time histories. The global 
energy content of the vibration data is typically quantified by calculating the Root-Mean-Square (RMS) value of 
the signal, which for a zero mean process can be expressed as 
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When deviations from Gaussian behaviour are expected, three global signal statistics are often used to 
describe the data. The first is skewness, which is defined as the average of the instantaneous vibration values 

)( tjx ∆  cubed. For a zero mean process, the skewness can be expressed as 
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A second statistic often used to quantify the deviation from a Gaussian stationary model is the Kurtosis, which 
is the fourth normalised spectral moment. The Kurtosis is sensitive to outlying data. For a zero mean process, 
the Kurtosis can be expressed as 
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A third statistic is the Crest Factor, CF , which is defined to be the ratio of the maximum value found in the 
time history to the RMS value. For a Gaussian stationary process the skewness calculated from the vibration 
data should be zero ( 0=λ ), while the Kurtosis should result close to three ( 0.3=γ ) and the Crest Factor 
should normally be in the range 0.45.3 << CF .  

The SCOOP Project consortium included four EU vehicle manufacturers (2 automobile and 2 industrial 
vehicle) who furnished experimental data from their NVH proving ground circuits. The signals consisted of 
vertical acceleration time histories measured at the rear bolt of the outer guide of the driver’s seat. One 
particularly large data set consisted of measurements from 11 different test tracks of five types: speed circuit 
surface, highway surface, good road surface, country road surface and pave’ surface. Each time history 
represented steady-state vehicle motion at constant speed. Preliminary analysis of the data from the 11 road 
surfaces showed that only 2 of the 11 could be considered stationary Gaussian processes. An example of the 
data from one of the Gaussian road surfaces is presented as Figure 1-a. The 9 remaining data records failed 
to follow a Gaussian stationary model. Two data records presented highly nonstationary behaviour, as shown 
in the example of Figure 1-b. Such heavily nonstationary signals are best described as containing one or more 
large transient events. Their frequency content, RMS and mean value vary over time. The remaining 7 road 
surfaces were intermediate situations, between purely stationary random and the purely transient. For the 
purposes of this paper, such surfaces have been classified as mildly nonstationary vibration. Mildly 
nonstationary vibration is taken in this paper to mean a random vibration process with stable mean and RMS 
values for most of the record, but containing a few high peaks due to short duration transients. The high peaks 
correspond to bump events (shock events) which occur when the vehicle moves over large road irregularities 
such as stones or pot-holes. An example of a vibration signal obtained from a mildly nonstationary road 
surface is presented in Figure 1-c, where it can be seen that the high peaks are reflected in the signal statistics 
by an increase of Kurtosis to 23.3=γ  and Crest Factor up to 9.5=CF  in value.  
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Figure 1) Seat guide vertical acceleration data produced by three road surfaces. 
a) stationary Gaussian signal with 9.3,04.3,04.0 ==γ=λ CF  (Highway Surface) 
b) heavily nonstationary signal (Good Surface with a Climb) 
c) mildly nonstationary signal with 9.5,23.3,01.0 ==γ=λ CF  (Speed Circuit Surface) 
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Figure 2) Seat guide vertical acceleration PDF tail for a road signal (- - -) and for its 

mission signal constructed by means of the method of classical Fourier Series 
inversion () 

a) 

b) 

c) 



The presence of small numbers of bump (shock) events can have a large effect on several signal statistics. 
Figure 2 presents a typical example of a Probability Density Function tail (extreme values of the PDF function) 
for a seat guide vertical acceleration road signal and for a mission signal constructed using the classical 
Fourier Series inversion method. Mission synthesis by means of Fourier Series inversion can be seen to 
produce vibration time histories whose extreme values underestimate those of the original data set. Use of 
Fourier synthesised test signals leads to an underestimation of the vibrational response and of the fatigue life 
of the component under evaluation. 

 

3. Mildly Nonstationary Mission Synthesis (MNMS) 

The MNMS algorithm was developed for the purpose of synthesising mission signals for mildly nonstationary 
road surfaces, the most numerous class found in the proving ground data. While starting from a synthetic 
basis signal constructed by means of classical Fourier Series inversion, the MNMS algorithm performs a series 
of time history corrections so as to reintroduce bump (shock) events into the short mission signal, thus bringing 
the PDF tails, Kurtosis and Crest Factor back to values close to those of the original road data. The basic 
signal processing algorithms used are the Discrete Fourier Transform (DFT) and the Orthogonal Wavelet 
Transform (OWT). MNMS-specific operations include: grouping of wavelet levels, selection of bump events, 
counting of bump events, synchronisation of bump events, event reinsertion and event edge smoothing. 

3.1 MNMS – Synthetic Fourier Base Signal 

In the first stage on MNMS processing, Fourier analysis is applied to the road data to determine the overall 
Power Spectral Density function. Each frequency line in the obtained PSD is characterised by an amplitude 

)fk(Sf2Ak ∆∆=           (4) 

where S(f) is the underlying power spectral density of the Gaussian signal and fk ∆  is the frequency of the 

harmonic in question. The amplitudes kA  are then used to generate a short synthetic signal which serves as 

the basis for constructing the vibration mission signal. The synthetic signal is calculated from a Fourier Series 
expansion using a large number N of harmonics 
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with phase angles ϕ k  chosen in a random manner, in line with the traditional assumption of stationary 

Gaussian behaviour. Constructing a short summary signal by means of Fourier techniques is a basic 
procedure traditionally used in digital random controllers for shakers and similar test benches [10-12,17,18]. 
The approach guarantees that the short test signal reproduces the PSD of road data. In the MNMS algorithm 
the time duration of the synthetic Fourier signal is defined in terms of the requested compression ratio. Values 
of up to 10 have been tested and found accurate to date. 

3.2 MNMS – Wavelet Decomposition and Wavelet Level Grouping 

Previous research [13-16] has shown that analysis is greatly facilitated if the vibration time history is first 
decomposed by means of the Orthogonal Wavelet Transform [2,8,9]. Wavelets are mathematical functions 

)(tψ  which are used to decompose a signal )(tx  into scaled wavelet co-coefficients ),( baWψ
. The continuous 

wavelet transform is a time-scale method which can be expressed as  
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where )(, tbaψ  are the scaled wavelets and ∗ψ  is the complex conjugate of ψ . The basis wavelet )(tψ  can be 

any of a number of functions which satisfy a set of admissibility conditions. A natural extension of continuous 



analysis is the discretisation of time b  and scale a  according to 000 , banbaa nm ==  where m  and n  are 

integers, 00 ≠b  is the translation step. This implies the construction of a time-scale grid, and thus a Discrete 
Wavelet Transform can be defined by 
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When the wavelets )(, tnmψ  form a set of orthonormal functions, there is no redundancy in the analysis. The 

discrete wavelet transform based on such wavelet functions is called the Orthogonal Wavelet Transform. 
These transforms are particularly convenient in damage detection and other feature selection applications, and 
have thus been adopted for MNMS. The algorithm makes use of wavelet levels, which are signals 

reconstructed from the wavelet decomposition for a given value of scale 
ma−

0 . Daubechies wavelets functions 
(see Figure 3) were chosen and the algorithm uses up to 15 wavelet levels for a typical signal sampled at 300-
400 Hz and containing a total of 30,000 data points. 

 

 

 

 

 

 

 

 

Fig 3) Examples of a Daubechies 4 (left) and a Daubechies 20 (right) wavelet function. 

 

The coefficients from the transform are used to construct an individual time history for each wavelet level. This 
is equivalent to using the wavelet transform as a filter bank, dividing the vibrational energy among the levels. 
To aid the identification of bump events in the data, a grouping stage was introduced to permit the user to 
group levels is such as way as to isolate frequency bands of particular interest. For example, in the case of 
automobiles, one or more wavelet levels can be grouped into a single wavelet group which covers the low 
frequency band up to 3 Hz, thus separating out the vibrational energy of the rigid body resonances of the 
chassis on the suspensions. When synthesising mission signals for seat testing, wavelet groups can be 
defined to cover frequency bands associated with suspension modes, engine/gearbox modes, chassis modes 
or tyre modes. The procedure of grouping wavelet levels into application specific bands is helpful in that it 
becomes less likely that vibrational energy from one subsystem resonance covers that of others during 
analysis. 

Figure 4 presents, in the frequency domain, an example of the wavelet grouping procedure. The vibration 
signal is from an accelerometer aligned with the vertical direction, placed over the outer rear mounting bolt of 
the guide of the driver’s seat. The experimental measurement was performed while driving over a country road 
test track at a constant speed of 90 km/h. In this example, the vibrational energy from 0 to 60 Hz covered 15 
wavelet levels, which were grouped according to the natural energy distribution of the signal into four wavelet 
groups labelled 1 to 4. The four sets of wavelet coefficients provide output time histories which separate the 
vibrational phenomena into four frequency ranges. The need for such band pass filtering depends to some 
extent on the point of the vehicle being measured and on the road surface, but it has generally been found that 
such filtering is required to efficiently identify bump events.  
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Figure 4) Example of the wavelet grouping procedure applied to seat guide vertical acceleration data. The 

wavelet levels in the frequency range from 0 to 60 Hz were organised into 4 groups. 

 

3.3 MNMS – Bump Event Selection and Processing 

In the MNMS algorithm a wavelet analysis is performed on both the original road data and the short synthetic 
Fourier signal. A processing stage then seeks to locate the bump events in each wavelet group of the original 
road data. The high amplitude events are saved to memory, ordered, then reinserted into the synthetic Fourier 
signal so as to “correct” it, returning the behaviour and statistics to those of the original road signal. 

For the purpose of the MNMS algorithm, bump events are defined as high amplitude transient events which 
can cause the overall time history to deviate from a stationary gaussian model. Bump events are identified by 
searching the wavelet group time histories for data points which exceed a trigger level prescribed (for each 
wavelet group) by the user in terms of standard deviations. Wavelet group trigger levels in the range from 2.0 
to 4.0 standard deviations have been found to produce accurate vibration missions for most road data signals 
analysed to date. Once an event is identified which exceeds the trigger level, the time duration of the bump 
event is determined. To determine the time extent of an individual bump event it is assumed that the event 
represents the system response to a single isolated impulse. The algorithm checks the monotonic decay 
envelope of the signal on either side of the peak value and identifies the points where the signal amplitude 
begins again to increase. The inversion points at which the monotonic decay process ends are taken to signal 
the time duration of the bump event. The bump start and end points are then taken to be a fixed distance (in 
data points) from the points of envelope inversion.  

 

wavelet group 2 

 

wavelet group 1 

 

wavelet group 4 

 

wavelet group 3 



 

 

 

 

 

 

 

 

Figure 5) Bump selection by means of trigger level and end inversion check. 

 

In MNMS, the number of bump events in the road data and in the synthetic Fourier data are compared for 
each wavelet group to decide whether the Fourier data is an accurate representation of the original signal, or if 
instead it is necessary to introduce bump events into the synthetic time histories. Table 1 presents an example 
of the results from an MNMS analysis run made for 12 minutes of seat guide vertical acceleration data from an 
automobile on a country road test track driving at 90 km/h. The number of bump events ( 5.3≥CF ) counted in 
the road data and in the synthetic Fourier data are given for four wavelet groups. When comparing the road 
and synthetic Fourier signals, it can be seen that the results for wavelet groups 2 and 4 are similar, but that 
groups 1 and 3 present significant differences. Groups 1 and 3 require correction of the synthetic Fourier 
signal by means of bump event reinsertions. 

 

Wavelet  Group  Number 1 2 3 4 

number of bump events in road data 365 122 151 15 

number of bump events in Fourier signal 150 78 51 14 

ratio of the above two lines (rounded off) 2.5 1.5 3.0 1.0 

 

Table 1) Bump event count ( 5.3≥CF ) for automobile seat guide vertical acceleration data 
from a country road test track. 

 

3.4 MNMS – Bump Event Reinsertion and End Smoothing 

In the MNMS procedure, bump events from a wavelet group of the original road signal are introduced into the 
same wavelet group of the synthetic Fourier signal with minimum disturbance to the latter. If all bump events 
extracted from a long record were introduced the correction could be excessive, and the final mission signal 
could deviate from the original in several statistics. It was therefore decided to introduce a number of bump 
events selected to be in direct proportion to the signal compression ratio. After selecting and determining the 
time extent of each bump, the bumps are counted and ordered. For each wavelet group, each bump is ranked 
based on its maximum peak amplitude. Having ranked all bump events, and having specified a compression 
ratio of n, bump events are selected by moving down the ranking list with a step equal to n. In so doing, bump 
events of various intensities appear in the mission signal. 

Several strategies for reinserting bump events into the synthetic Fourier signals have been developed and 
tested. Figures 6, 7 and 8 describe the three methods that are currently implement in the MNMS software. The 
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first reinsertion strategy is the nonsynchronised procedure. In this procedure each wavelet group is treated as 
independent from each other group, bump events occurring in one wavelet group time history are not 
considered to be related to those of another. The bumps are reinserted independently at the point of closest 
similarity between the bump event and the synthetic Fourier signal. This method can be the most appropriate 
for road data from vehicle systems having widely spaced (in frequency) modes of vibration and from road 
surfaces with large single irregularities of varying wavelength. The method was found to provide good results 
for several of the SCOOP Project data sets. 

Synchronisation procedure 1 involves the synchronisation of bump events across wavelet groups. The basis 
for this method is the observation that a single sharp road irregularity will approximate an impulse function. In 
the frequency domain, energy would be present in the input spectrum up to a critical cutoff frequency. For an 
input signal of this type, the vibrational energy would spread across many, it not most, wavelet groups. The 
bump events in the various wavelet groups would therefore be expected to be occurring together, and 
independent reinsertion of such events would not correctly represent the data. Synchronisation procedure 1 
attempts to solve this problem by reinserting together all bump events which occurred at the same time due to 
an impulsive input to the vehicle. Wavelet group 1, which spans the lowest frequency range under 
consideration, is used for the synchronisation check. All bumps from all wavelet groups that are found to occur 
at the same time as a wavelet group 1 event are bundled together and reinserted into the synthetic Fourier 
signal as a single event. 

A last strategy, named synchronisation procedure 2, involves reinsertion into the synthetic Fourier signal of 
segments of the original time history. This procedure is the most conservative of the bump reinsertion 
strategies developed. Once all bump events are identified and ranked for all wavelet groups, synchronisation 
procedure 2 “cuts” the original road data time history, and the whole segment defined by the “cut” is 
reintroduced into the synthetic Fourier signal. By reinserting the segment of the original road time history, 
issues regarding the synchronisation of individual bump events are bypassed, thus maintaining unaltered all 
the original amplitude and phase relationships. Wavelet-based analysis is used to locate the bump events, but 
reinsertion simply involves transferring a segment of data from the road signal to the closest matching 
segment of the synthetic Fourier signal. In many cases, this procedure was found to produce the closest 
match between the global statistics of the final mission signal and those of the original road data. 

For all three synchronisation procedures, the road data events are introduced into the synthetic Fourier signal 
at the point at which the two signals are most similar. This location is determined by means of a correlation 
procedure in which the bump event is moved along the whole time history of the synthetic signal and 
compared in terms of root-mean-square difference at each position. The RMS difference is computed as 
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where M  is the number of data points of the bump event. The point with the lowest RMS difference (highest 
correlation) is selected as the insertion point, and the bump event of time extent tM ∆  then substitutes the 

similar event of time extent tM ∆  of the synthetic signal. When all required bump events are introduced, the 
synthetic Fourier signal can be considered to be upgraded to mission signal status. Selection by the user of a 
large compression ratio can make it difficult for the algorithm to provide an optimal mission signal, therefore 
the MNMS procedure produces at the end of each run not just the mission time history, but also the PSD plots, 
Crest Factor values, RMS values and Kurtosis values for each wavelet level of both the original road data and 
the mission signal for comparison purposes. If significant deviations occur in any of the metrics due to an 
unfavourable combination of phase angles during Fourier signal generation, the algorithm can be re-launched 
to attempt to achieve a more favourable result. 

A final operation performed by the MNMS algorithm during bump reinsertion is the smoothing of bump event 
end discontinuities by means of a 5 point exact-fit polynomial. The polynomial smoothing is performed in order 
to better merge the bump (shock) event into the synthetic Fourier signal, eliminating any discontinuities 
produced during segment reinsertion.  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6) Nonsynchronised bump reinsertion procedure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7) Synchronisation procedure 1. 
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Figure 8) Synchronisation procedure 2. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9) MNMS Algorithm Flowchart 
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calculation of global statistics of the corrected synthetic signal 

perform and visualise the wavelet decomposition of the road data 

read ASCII file of road data 

group wavelet levels into a small number of wavelet groups (by 
means of saved settings or by user interactive selection) 

bump ordering from smallest to largest based on peak amplitude 

wavelet decomposition of the Fourier synthetic signal  

Fourier synthetic signal generation at desired compression ratio 

set compression ratio, synchronisation method and random number seed 
(by means of saved settings or by user interactive selection) 

calculate and visualise the PSD of the road data 

set bump trigger levels (by means of saved settings or by user interactive selection) 

bump selection on each wavelet group 

reinsertion of selected bumps 

smoothing of end transitions at each bump reinsertion point 

cross-correlation analysis to determine the reinsertion point where the synthetic 
signal and bump are most similar 



4 Mission Synthesis Results 

Figure 9 presents the flow chart for the complete MNMS algorithm in its current form. User inputs can be 
performed either directly from terminal or by means of a parameter file. The program is written in Fortran, and 
runs on DOS-compatible PCs. Figure 10 presents the PSDs of mission signals obtained for a seat guide 
vertical acceleration data set from a country road surface at 90 km/h using compression ratios of 1, 2, 4 and 8. 
The PSDs at all compression ratios are close to those of the original data, and well within the variance of the 
PSD estimate itself. The Kurtosis value of each wavelet group of the mission signal was within +/- 7% of the 
corresponding wavelet group in the road data. The results obtained for this example data set are 
representative of the results obtained for other road data sets, and can thus be considered typical. Computer 
runs times are of the order of a few minutes. 
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Figure 10) PSD comparison between the final mission signals (- - -) for the seat guide vertical 

acceleration data and the original road data () for compression ratios of 1, 2, 4 and 8. 
 
In order to illustrate the effect of the compression ratio on final mission signals, results from two data sets are 
presented below. The first data set is from a Renault automobile measured over a relatively stochastic road 
surface. The data set contained only a few bump (shock) events, and was thus very close to the base 
definition of a mildly nonstationary signal. The Renault data set was sampled at 300 Hz and was 109.2 
seconds in length (32,766 data points). It was decomposed into 8 wavelet levels which were grouped into 5 
wavelet groups. Bump trigger levels in the range from 2.2 to 4.2 were set for the various wavelet groups. The 
second data set presented below was from a BMW automobile measured on a road surface with numerous 
shock events. The data set was sampled at 256 Hz and was 120.0 seconds in length (30,720 data points). It 
was decomposed into 9 wavelet levels which were grouped into 4 wavelet groups. Bump trigger levels in the 
range from 2.2 to 4.5 were set. The BMW data set can be considered much more nonstationary than the 
Renault data set. The global statistics of the two data sets are presented in Table 2. 
 



Global Statistic Renault Data Set BMW Data Set 

RMS 0.17 0.37 

Kurtosis 3.54 4.60 

Skewness 0.13 -0.06 

RMQ 0.23 0.54 

Positive Crest Factor 5.60 5.99 

Negative Crest Factor -4.09 -5.65 
 

Table 2) Global statistics of selected Renault and BMW data sets. 
 
Figures 11 and 12 present MNMS performance summaries at various compression ratios. Each data point 
represents the average of five individual MNMS runs. The plotted curves include the value of the original road 
data set, the value obtained from the nonsynchronised procedure, the value obtained from synchronisation 
procedure 1 (sync_1) and the value obtained from synchronisation procedure 2 (labeled sync_2). From the 
Kurtosis plots it can be seen that all three synchronization methods achieved good results for compression 
ratios in the range from 2 to 10. The mission signals obtained for the Renault data set, which contained only a 
small number of bump events, were very close to those of the original road data set. In terms of signal global 
statistics, the results for the BMW data set, which contained numerous large bump events, can be seen to fall 
somewhat short of the road data set. The reader is reminded, however, that the achieved Kurtosis values were  
nonetheless greater than the value of 3.0 that is produced by the classical method of Fourier Series inversion. 
From the Crest Factor plots it can be seen that the values achieved by the MNMS mission signals fall short of 
the value calculated from the original data at compression ratios of 1, and that performance tends to drop 
monotonically with increasing compression ratio due to greater difficulties with finding optimum reinsertion 
points with increasing number of bump events. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11) Kurtosis and Crest Factor variation (average of five runs) as a function of the signal 
compression ratio for a data set from a Renault automobile. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12) Kurtosis and Crest Factor variation (average of five runs) as a function of the signal 
compression ratio for a data set from a BMW automobile. 
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5. Conclusions 

Observation of experimental data from the test tracks of four European vehicle manufacturers suggested that 
vibration signals could be grouped into three categories: stationary Gaussian vibration, heavily nonstationary 
vibration and mildly nonstationary vibration. The case of mildly nonstationary vibration was the most common 
found in the proving ground data. The Mildly Nonstationary Mission Synthesis (MNMS) algorithm represents 
one method of summarising such vibration records so as to obtain short mission signals that can be used for 
experimental or numerical testing purposes. 

The MNMS algorithm makes use of the Discrete Fourier Transform, the Orthogonal Wavelet Transform and 
bump (shock) event selection and reinsertion techniques. By performing a wavelet grouping procedure, and by 
setting wavelet group trigger levels, the user can produce mission signals which are shortened by up to a 
factor of 10 compared to the original road data. The resulting missions are representative of the original data 
record in terms of Power Spectral Density, Probability Density Function, RMS value, Crest Factor and Kurtosis 
value. Mission synthesis results vary depending on the level of nonstationarity present in the original data, but 
mission signal PSD, RMS and Kurtosis values are typically within +/-10% of the road data targets. The 
algorithm has been implemented as a Fortran program which runs on DOS-compatible personal computers 

Research is currently under way to establish a simple procedure for determining the optimal wavelet group 
trigger levels to use for a given data set, and to establish what maximum compression ratios can be achieved 
for data from automobiles, vans and heavy lorries. Research is also under way to establish the effect of bump 
event scaling (increasing the size of individual shocks) on the global signal statistics. Bump event scaling 
could be used to control the severity of the mission signal, and could have important applications in areas such 
as accelerated fatigue testing. Current activities are investigating the average rate of growth of the global 
mission signal statistics as a function of the multiplying scale factor used to increase the bump events before 
reinsertion in the synthetic Fourier signal. 

A new EPSRC funded research project launched at Sheffield University will also add a clustering and 
classification stage to the MNMS algorithm to analyse the structure of each bump event and to cluster bump 
vectors so as to provide a complete documentation of the road features. The objective is to define for each 
road signal the alphabet of bump (shock) features present. Besides providing a tool for data analysis, such a 
clustering and classification stage will provide the basis for an intelligent black-box recorder for long-time 
testing and monitoring applications. 
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